大会报告人信息
![]() |
张波 电子科技大学教授、博士生指导教师、天府杰出科学家,现任电子科技大学功率集成技术实验室主任、电子科技大学集成电路研究中心主任、电子科技大学重庆微电子产业技术研究院名誉院长、成都岷山功率半导体技术研究院名誉院长等,同时兼(曾)任国家01、02科技重大专项总体组专家、多个国家部委微电子领域特聘专家、中国电源学会元器件专委会主任、四川电子学会半导体集成技术专委会主任等。 长期从事功率半导体芯片技术研究,在功率半导体领域作为第一完成人获国家科技进步二等奖等国家及省部级科技奖励5项,发表论文600余篇,授权中美发明专利300余项,带领电子科技大学功率集成技术实验室已培养毕业功率半导体领域博士、硕士1000余名,与企业合作开发功率半导体工艺与产品200余项,产生直接经济效益超过100亿元。 |
报告题目: |
电力电子器件技术与发展趋势 |
报告摘要: |
报告首先对电力电子器件及产业的特点进行了分析,结合新形势下国产电力电子器件得到的试错迭代宝贵机会,阐述了中国电力电子器件行业的发展机遇。在电力电子器件的技术发展部分,报告从More Device和More than Device两个维度,More Silicon和Beyond Silicon两个领域,分析了电力电子器件的技术发展方向和新形势下产业链的变化。SiC功率半导体器件和GaN电力电子器件作为第三代半导体器件的典型代表,是Beyond Silicon的核心器件,同时被誉为下一代的电力电子器件,对其发展及应用领域,报告在其最后部分也给出了报告人自己的看法。 |
![]() |
叶得军 上海交通大学应用物理专业;哈佛商学院高级管理AMP,新能源产业从业20年,曾任无锡尚德太阳能公司副总裁,SPI (Nasdaq) CEO,阳光长江投资有限公司CEO,PGO氢能与燃料电池产业研究院常务副院长,主导尚德3亿美金收购日本企业MSK,三峡27亿收购葡萄牙电力工作,在全球15个国家进行电站的建设管理,累积超过4,900MW新能源开发投资经验。 |
报告题目: |
氢能革命:全产业链布局与未来发展趋势 |
报告摘要: |
随着全球能源结构的变化趋势,氢能作为一种可持续、清洁的能源正受到越来越多关注。氢能全产业链中,氢电转换是其中的核心,主要包括质子交换膜、双极板和电堆等关键产品。燃料电池系统作为氢能核心产业之一,能实现直接将氢能转变为电能,具有广阔的商业运营模式及持续路径解决方案。氢能远远超越在交通领域的应用,厢式物流车是其重要的应用场景之一。同时,氢气来源丰富、应用广泛,绿电-电解水制氢更是其最大的增长点之一。不同制氢技术的对比以及碱性制氢技术现状及挑战等问题也备受关注。未来,氢能作为能源载体将全面布局于各个产业领域,推动能源革命。报告最后指出,公司需加强与合作伙伴的协作,发掘更广阔的运营场景,布局全产业链,打造未来国家能源系统。 |
![]() |
Johan
H Enslin PhD, FIEEE, FSAIEE, PrEng Dr. Johan H Enslin is the Duke Energy Endowed Chaired Professor at Clemson University in North Charleston SC and Director for the Academic Programs at the Zucker Family Graduate Education Center. He is also a Distinguished Visiting Professor at University of Johannesburg in South Africa. He has combined a balanced industry and academic career with 42-year leadership experience in industry and academia throughout the USA, Europe and South Africa. Dr. Enslin’s current research focusses mainly in the area of building a smarter, modern integrated AC & DC power grid with high penetration of converter-based generation. Among others he is evaluating the role and optimization of energy storage technologies in grid modernization initiatives, hybrid AC & DC power grids and offshore HVDC systems. He is a registered Professional Engineer in South Africa, Fellow of the SAIEE and Fellow of the IEEE. He is currently serving as VP of Industry and Standards and AdCom member for the IEEE PELS Society. |
报告题目: |
“Integrating Offshore Wind Power with Multi Terminal HVDC Networks” |
报告摘要: |
The increased efforts to integrate large amounts of offshore wind power to existing AC onshore networks through limited point of interconnections provide fundamental challenges in terms of contingency analysis and power transfers. The AC network may already be congested and may already have large levels of onshore wind and solar power generation. There are therefore important requirements needed to maintain and maybe increased the reliability and resiliency of the power supply. The steady improvement of the voltage levels, reduction of HVDC converter technology, as well as energy storage, is creating opportunities for the wide-scale adoption of HVDC converter-based transmission coupled with bulk energy storage systems in multi-terminal HVDC (MTDC) configurations. The objective of this presentation is to focus on the technology readiness and development of the interconnection system standards to integrate large levels of offshore wind generation through MTDC offshore networks. |
![]() |
Biograph Prof. Eui-Cheol Nho He received the B.S. degree in Electrical Engineering from Seoul National University, Seoul, Korea in 1984, and the M.S. and Ph.D. degrees in Electrical and Electronic Engineering from Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea in 1986 and 1991, respectively. He was with the Powertech Co., Ltd., Korea, as a chief of the R&D center from 1991 to 1995. In 1995, he joined the department of Electrical Engineering, Pukyong National University, Busan, Korea, where he is currently a professor. He holds 39 patents and has published more than 90 journal papers and around 300 conference papers in the area of power electronics. He served as the chief of PKNU Industry-University Cooperation Foundation from 2014 to 2016, the president of Korea Institute of Power Electronics for a year of 2018, and the general chairperson of the ICPE 2019-ECCE Asia. His current research interests are high voltage PWM converter, soft-switching converter, HVDC valve and submodule test circuit topology, and power line conditioners, etc. |
报告题目: |
Test Circuits for Thyristor Valve and MMC-based VSC Valve in HVDC Power Station |
报告摘要: |
The power converter in HVDC system is the most important element that converts ac power to dc power or vice versa. The HVDC power converter can be classified into current source type and voltage source type, based on the type of switching valves. Thyristor-based current source converter, which was first installed in the beginning of 1980, is still continuously under construction all over the world. Voltage source HVDC power converter was first commissioned in Gotland, Sweden, in 1999. The number of installation is continuously increased because of many advantages over current source type HVDC converter. The HVDC power converter operates in extremely high voltage and high power condition. So, many units of thyristor are connected in series to comprise one valve in the current source type power converter. The normal or abnormal operation of power converter should be tested before it is commissioned in the site. A huge test facility is required when the power converter is tested under full power and voltage, which consumes a huge amount of power and expense. And safety is also a big issue due to extremely high testing voltage. In order to solve this problem an effective test scheme was derived, in which the turn-on and turn-off characteristic of thyristor valve is tested under operation current and voltage when the power converter operates under full voltage and current. In case of voltage source type HVDC, hundreds of submodules with insulated gate bipolar transistors (IGBTs) and DC capacitor, which are identical and provide hundreds of discrete voltage levels, are connected in series to meet the HV rating. It is required that a valve consisted of several series-connected submodules should be tested to check the adequacy of the VSC level and associated electrical circuits with regard to current, voltage, and temperature stresses in the conducting state, at turn-on and turn-off under the worst repetitive stress conditions. In this talk, some test circuits for HVDC power station will be introduced and discussed. |
![]() |
Atsuo KAWAMURA Yokohama National University Atsuo Kawamura (Life Fellow, IEEE) received the B.S.E.E., M.S.E.E., and Ph.D. degrees in electrical engineering from the University of Tokyo, Tokyo, Japan, in 1976, 1978, and 1981, respectively. After the five-year-stay at the University of Missouri-Columbia as a faculty member, he joined Yokohama National University in 1986, and in 1996 he became a professor. He served as a dean of College of Engineering Science and Graduate School of Engineering from 2013 to 2015. He has become Professor Emeritus in 2019, and now is a professor of endowed chair (Power Electronics) at the same university. He has served to completion of 38 Ph.D and 147 Master’s and 179 Bacheler’s students. He holds 7 patents and has published more than 130 journal papers and 320 international and 560 domestic conference papers, and 9 books. (h-index(Google) is 45.) His research interests include power electronics, digital control, electric vehicles, robotics, train traction control, etc. He received several awards including several Transactions Prize Paper Awards from IEEE and IEEJ. Dr. Kawamura is also a Fellow of the Institute of Electrical Engineers of Japan(IEE of Japan). |
报告题目: |
How can we achieve inverters with an efficiency level of 99.9%? |
报告摘要: |
With the advent of wide bandgap semiconductor devices, power conversion with high conversion efficiency has become possible; however, since the output of DC-AC power conversion (inverter) is AC, it is more difficult to achieve ultra-high efficiency compared to DC-DC conversion. First, the current state of the art in the recent literature on high efficiency inverters will be presented, followed by the latest results of a high efficiency HEECS inverter being pursued by the authors' group. With higher efficiency comes the need to guarantee the accuracy of its measurement. The authors review the very accurate loss measurement method called VTASLM, which uses only electrical measuring instruments. Using this measurement design principles to obtain higher efficiency is introduced. The resulting data for the latest highest efficiencies will be presented. Finally, the application examples of the HEECS inverter (power factor change control and motor drive control) will be presented. |
![]() |
宋高升 三菱电机半导体大中国区 技术总监 毕业于同济大学,获电力电子专业硕士学位。 1997年加入三菱电机半导体大中国区,现任应用技术中心总监,在电力电子变换的诸多领域拥有丰富的功率半导体应用经验。目前的主要职责是,率领三菱电机半导体大中国区的工程师团队,支持三菱电机功率器件在变频家电、工业传动、新能源发电、轨道牵引、电力系统和电动汽车方面的应用,以及开发面向市场需求、基于三菱电机功率半导体的创新功率组件解决方案。 |
报告题目: |
大功率半导体模块的应用痛点及其对策 |
报告摘要: |
本演讲从高压大电流功率半导体模块在实际应用中可能遇到的并联均流、使用寿命、低温可靠性、耐湿度鲁棒性、性能退化等多个问题进行分析,介绍新一代大功率半导体模块的技术改进和优化对策。 |
![]() |
杨玉巍 小米通讯技术有限公司手机基带总监 小米通讯技术有限公司手机基带总监,全面负责基带硬件领域的新技术落地应用及前沿技术探索研究,拥有丰富的消费电子项目研发与工程经验。 |
报告题目: |
《小米下一个十年的“助推器”:硬件技术创新与应用》 |
报告摘要: |
小米公司正式成立于2010年4月,是一家以智能手机、智能硬件和 IoT 平台为核心的消费电子及智能制造公司。胸怀“和用户交朋友,做用户心中最酷的公司”的愿景,小米致力于持续创新,不断追求极致的产品服务体验和公司运营效率,努力践行“始终坚持做感动人心、价格厚道的好产品,让全球每个人都能享受科技带来的美好生活”的公司使命。 过去几年,小米一直在坚定不移地执行高端化战略,从性能领先走向体验优先,坚持以手机为中心,全面深化推进“手机 x AIoT”的核心战略,营造体验全面领先的智能生态。高端之路将是一次技术、产品、品牌、品质、服务的全面突破。 硬件技术作为高端化的重要发力点,支撑着小米的下一个十年。本次演讲旨在介绍近些年来小米在硬件技术方面的创新与应用,以期展示小米一直贯彻的“技术立业”发展理念。 |
专题讲座报告人
![]() |
耿华 清华大学长聘教授、清华大学电工电子实验教学中心主任、自动化系党委副书记。 2008年于清华大学自动化系获博士学位,2008.10-2010.5,在加拿大Ryerson大学从事博士后研究工作,2010.6至今,在清华大学自动化系从事电力电子与多能源系统相关教学科研工作。主持国家重点研发计划专项项目、国家自然科学基金重大集成项目课题、优青、重点、中英国际交流等科研项目;出版科学著作1部,发表论文200余篇;授权中国发明专利30余项;获中国青年科技奖、国家科技进步二等奖1项、省部级科技奖励4项,当选教育部长江学者特聘教授、IEEE Fellow、IET Fellow。担任IEEE Trans. on Sustainable Energy等3个IEEE汇刊、IET Renewable Power Generation、Control Engineer Practice期刊编委,IEC SC 8A新能源建模工作组召集人,中国电源学会常务理事、青年工作委员会名誉主任、会员发展工作委员会副主任、新能源电能变换技术专委会副主任等。小米通讯技术有限公司手机基带总监,全面负责基带硬件领域的新技术落地应用及前沿技术探索研究,拥有丰富的消费电子项目研发与工程经验。 |
|
|
![]() |
黄萌 武汉大学电气与自动化学院副教授,博士生导师。 于2006年和2008年获华中科技大学学士、硕士学位,2013年获香港理工大学博士学位。从事电力电子并网变流器安全运行和控制问题研究。主持国家自然科学基金优青、面上、青年项目各1项,国家重点研发计划子课题2项。以第一或通信作者发表期刊论文40篇(ESI高被引论文1篇),授权中国发明专利7项。成果获2021年湖北省科技进步一等奖、2017年教育部技术发明二等奖等;论文获2020年CSEE JPES优秀论文奖、2016年IEEE TPEL最佳论文奖等。应邀担任IEEE期刊客座主编/副主编4次,任SCI国际期刊International Journal of Circuit Theory and Applications编委,中文核心期刊《电源学报》编委,中国电源学会青工委、电力电子化电力系统与装备专委会副秘书长等。 |
讲座题目: |
《新能源并网装备暂态稳定:建模、分析及控制》 |
讲座摘要: |
双碳目标驱动下,新能源发电装备将成为未来电力系统的主要组成部分。新能源发电一般采用电力电子装备作为并网接口,因半导体器件电压/电流应力的限制,其抗扰性较弱,在电网故障下往往需要通过电路/控制的序贯切换以保护装备及保持并网运行。相比传统发电,新能源发电的暂态行为不再由机电动力学特性主导,而受切换控制影响,呈现更为复杂的非线性特征,引发新的失稳现象。报告将从建模、分析和控制三个角度介绍新能源并网装备暂态稳定相关的研究进展,探讨未来的发展趋势。 |
![]() |
李子欣 中国科学院电工研究所所务委员,研究员,博士生导师,世界首个电磁推进地面超高速试验设施(电磁橇)副总师,英国工程技术学会会士(IET Fellow)、IEEE高级会员、中国电源学会高级会员,主要从事大功率电力电子与电磁驱动技术研究。 曾承担广东南澳多端柔直工程±160kV/50MW换流器、云南鲁西柔直工程±350kV/1000MW换流器、江苏同里10kV/3MW电力电子变压器、电磁橇设施等大容量电力电子与电磁驱动装备研发。兼任中国电机工程学会电工数学专委会委员、中国电源学会直流电源专委会委员、北京电力电子学会副秘书长以及IEEE Transactions on Power Electronics、IET High Voltage等国际期刊编委。已发表EI、SCI论文100余篇,获国家发明专利授权20余项,省部级科技奖6项。2015年获IEEE PELS Richard M. Bass Outstanding Young Power Electronics Engineer Award,是该奖亚洲首位获奖者。2022年入选斯坦福大学-爱思唯尔全球前2%顶尖科学家榜单。 |
讲座题目: |
《10kV电力电子变压器关键技术研究与应用》 |
讲座摘要: |
电力电子变压器(power electronic transformer,PET)通过高频电力电子变换和高频电气隔离将多种变换与调控功能集于一身,是构建智能电网和新型电力系统的关键设备。本讲座将围绕具有10kV中压交流端口的PET基础理论与关键技术展开。本报告涉及PET的功能和分类、具有10kV中压交流端口的PET电路拓扑、计算机仿真、高性能控制、损耗抑制、样机及装备研制、实验测试与工程应用等,同时也介绍了高功率密度高效率PET的探索研究。本讲座将有助于深入了解PET的运行原理与特性,掌握PET关键设备的分析、设计及实验测试方法,适合从事电力电子与智能电网领域的相关工作人员与师生。 |
![]() |
王懿杰 教授/哈尔滨工业大学电气工程及自动化学院副院长。 主要从事照明电子、无线电能传输、高频以及超高频功率变换方向的研究工作,共发表SCI/EI检索文章200余篇,授权发明专利28项,受理18项。曾获IEEE Transactions on Power Electronics 2017年度优秀论文二等奖、IEEE Transactions on Power Electronics 2018年度优秀论文一等奖、IEEE Transactions on Industry Applications 2018年度优秀论文二等奖、中国电源学会优秀青年奖、中达青年学者奖。曾获中国电力科学技术进步奖一等奖、国家电网有限公司科学技术进步奖一等奖、江苏省科学技术二等奖等奖励。获得国家自然科学基金优秀青年科学基金、黑龙江省优秀青年基金资助。担任SCI期刊IEEE TIE、IEEE JESTPE、IEEE Access、IET PEL、JPE副主编。担任中国电源学会理事、照明电源专业委员会主任委员。指导学生于2022年获得华为中国大学生电力电子创新大赛创新特等奖。 |
|
|
![]() |
麦建伟 博士后/哈尔滨工业大学助理研究员。 主要从事感应式无线电能传输技术和能量数据同步传输技术研究,曾获得IEEE Transactions on Industrial Electronics 2022年度杰出审稿人、哈尔滨工业大学春晖创新成果奖、研究生国家奖学金和台达奖学金等奖励。围绕研究内容发表SCI期刊14篇,其中以第一作者(或导师一作)在电气工程领域top期刊IEEE TIE、IEEE TPE和IEEE TPE发表论文7篇。作为主要完成人参与国家自然科学基金2两项、台达电力电子科教发展计划化重点项目1项和航天科工集团横向项目8项,授权发明专利5项,入选中国电工技术学会优秀博士成长故事,担任IEEE IES TC-DDCM委员,担任SCI期刊IEEE TIE、IEEE TPE、IEEE JESTPE、IET PEL审稿人。 |
|
|
![]() |
谷鹏 讲师/博士后,任职于东北大学智能电气科学与技术研究院。 主要从事无线电能传输、综合能源系统分析、电力系统电磁暂态分析等领域的研究。近年来,作为主要完成人参与国家重点研发计划项目1项,国家自然科学基金3项、国家电网有限公司总部科技项目2项。近三年发表SCI/EI检索论文十余篇,获得哈尔滨工业大学优秀博士学位论文、博士研究生国家奖学金等奖励。 |
讲座题目: |
《高距径比无线电能传输系统关键技术研究》 |
讲座摘要: |
无线电能传输技术克服了接触式供电的不足,具有灵活方便、安全可靠、环境适应性强、维护需求低等优势,为航空航天、高压输电、智能电网、植入式医疗、家用电器、电动汽车等领域技术和装备发展注入新动力,市场空间巨大。高距径比是无线电能传输技术发展的重要趋势,将带来功率密度、传输距离和传输效率的提升。本讲座围绕高距径比无线电能传输技术的发展趋势,针对高距径比无线电能传输技术的关键技术具体展开,报告涉及三维磁耦合机构设计方法、多级无线电能传输系统运行机理、寄生参数作用机理和整流器阻抗特性研究。本讲座将有助于深入了解高距径比无线电能传输系统的工作原理和关键技术,掌握高距径比无线电能传输系统传输效率提升的设计准则,适合于从事无线电能传输技术领域相关工作的研发人员与师生。 |
![]() |
王政 教授/东南大学电气工程学院,博士生导师,东南大学学士、硕士,香港大学博士,加拿大瑞尔森大学博士后。 在国内外期刊上发表论文120余篇,授权发明专利40余项。出版中、英文专著各1部。主持国家重点研发计划项目课题、国家自然科学基金、江苏省自然科学基金杰青项目等科研项目30余项。获江苏省科学技术一等奖、IEEE PES杰出工程师奖等奖励和荣誉,担任IEEE Transactions on Industrial Electronics等期刊编委,是IET Fellow和IEEE VTS Distinguished Lecturer. |
讲座题目: |
《基于高频电流源逆变器的电机驱动功率变换与控制》 |
讲座摘要: |
相比电压源逆变器,电流源逆变器具有输出电压dv/dt低、直流侧到交流侧自升压、可靠性高、短路电流容错能力强、可防止永磁同步电机失控运行等特点。近年来,宽禁带双向功率开关器件等新型器件技术快速发展,不仅解决了电流源逆变器依赖电压逆阻型器件的问题,而且有效提高开关频率,提升了电流源逆变器的功率密度,因此有望成为应用于电气化交通、新能源发电的高性能高可靠电机驱动技术方案。本报告将围绕基于高频电流源逆变器的电机驱动功率变换和控制技术展开,从拓扑、调制和应用几个方面进行介绍,具体包括零电压开关电流源逆变器电机驱动、多相电流源逆变器电机驱动、隔离型电流源逆变器电机驱动及其在电气化交通、风力发电中应用。 |